Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism

نویسندگان

  • Surbhi Sharma
  • Garima Anand
  • Neeraja Singh
  • Rupam Kapoor
چکیده

Arbuscular mycorrhiza (AM) can help plants to tolerate arsenic (As) toxicity. However, plant responses are found to vary with the host plant and the AM fungal species. The present study compares the efficacy of two AM fungi Rhizoglomus intraradices (M1) and Glomus etunicatum (M2) in amelioration of As stress in wheat (Triticum aestivum L. var. HD-2967). Mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were subjected to four levels of As (0, 25, 50, and 100 mg As kg-1 soil). Although As additions had variable effects on the percentage of root colonized by the two fungal inoculants, each mycobiont conferred benefits to the host plant. Mycorrhizal plants continued to display better growth than NM plants. Formation of AM helped the host plant to overcome As-induced P deficiency and maintained favorable P:As ratio. Inoculation of AMF had variable effects on the distribution of As in plant tissues. While As translocation factor decreased in low As (25 mg kg-1 soil), it increased under high As (50 and 100 mg As kg-1 soil). Further As translocation to grain was reduced (As grain:shoot ratio) in M plants compared with NM plants. Arsenic-induced oxidative stress (generation of H2O2 and lipid peroxidation) in plants reduced significantly by AMF inoculation. The alleviation potential of AM was more evident with increase in severity of As stress. Colonization of AMF resulted in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). It increased the concentrations of the antioxidant molecules (carotenoids, proline, and α-tocopherol) than their NM counterparts at high As addition level. Comparatively higher activities of enzymes of glutathione-ascorbate cycle in M plants led to higher ascorbate:dehydroascorbate (AsA:DHA) and glutathione:glutathione disulphide (GSH:GSSG) ratios. Inoculation by AMF also augmented the glyoxalase system by increasing the activities of both glyoxalase I and glyoxalase II enzymes. Mycorrhizal colonization increased concentrations of cysteine, glutathione, non-protein thiols, and activity of glutathione-S-transferase that facilitated sequestration of As into non-toxic complexes. The study reveals multifarious role of AMF in alleviation of As toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Mycorrhizal Fungi and Nano Zinc Oxide on Seed Yield, Na+ and K+ Content of Wheat (Triticum aestivum L.) under Salinity Stress

This research was conducted to evaluate effects of mycorrhiza fungi and nano zinc oxide on agro physiological traits of wheat under salinity stress based on factorial experiment according complete randomized block design with three replications under greenhouse condition at 2014. Treatments included salinity in three levels [no-salt (S0) or control, salinity 40 (S1) and 80 (S2) mM NaCl], two le...

متن کامل

The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize

A field experiment was conducted to observe the influence of a cover crop (winter wheat, Triticum aestivum L.), and a perennial weed (dandelion, Taraxacum officinale Weber ex Wigg.), on vesicular-arbuscular mycorrhiza (VAM) inoculum potential, soil aggregation, and maize yield after one season. Mycorrhizal colonization of maize roots was higher following the autumn planting of either winter whe...

متن کامل

Evaluation Effects of Mycorrhizal Fungi (AM) and Nano Zinc Oxide on Seed Yield and Dry Matter Remobilization of Wheat (Triticum aestivum L.) under Salinity Stress

This research was carried out to assessment agro physiological traits of bread wheat affected salinity stress, Nano zinc oxide and arbuscular mycorrhiza (AM) fungi under greenhouse condition via factorial experiment based on randomized complete blocks design with three replications. Experimental factors included salinity stress in three levels [no-salt (S0) or control, salinity 40 (S1), and 80 ...

متن کامل

The effect of ageing on antioxidant and biochemical changes in wheat (Triticum aestivum L.) seeds.

This research was carried out to study the effect of ageing on antioxidant and biochemical changes of wheat (Triticum aestivum L.) seeds. The experiment laid out in completely randomized design (CRD) with four replications in Islamic Azad University, Boroujerd Branch, Boroujerd, Iran in 2015. The seeds of wheat (cv Sardari) were harvested at maturity and ageing treatments were done at 43° C wit...

متن کامل

Changes in Antioxidant Enzymes Activity and Physiological Traits of Wheat Cultivars in Response to Arbuscular Mycorrhizal Symbiosis in Different Water Regimes

This study was conducted to evaluate changes in antioxidants, free proline, relative water content and determination of root colonization of four commercial wheat (Triticum aestivum L.) cultivars (Azar2, Darab2, Shiraz, and Falat) inoculated with the fungus Glomus intraradices, under four water regimes of 100, 75, 50, and 25% of field capacity in the year 2010 at the School of Agriculture, Shir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017